skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mateos, Mariano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider an unconstrained tangential Dirichlet boundary control problem for the Stokes equations with an $ L^2 $ penalty on the boundary control.  The contribution of this paper is twofold.  First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain.  The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary.  Second, we propose and analyze a hybridizable discontinuous Galerkin (HDG) method to approximate the solution.  For convex polygonal domains, our theoretical convergence rate for the control is optimal with respect to the global regularity on the entire boundary.  We present numerical experiments to demonstrate the performance of the HDG method. 
    more » « less